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ABSTRACT 

Malicious software threats and their detection are becoming an important part of information security 

as Information and Communication Technology (ICT) applications are widely used in our daily 

lives. Identifying malware is one of the most difficult problems in the design and development of 

antimalware systems. It is important to develop dynamic analysis algorithms that enable rapid 

detection of polymorphic and metamorphic malware. Demonstrates techniques for analyzing trace 

data and detecting malicious code using Long Short-Term Memory (LSTM) (LSTM). Models were 

created for both malicious and good Portable Executable (PE) files' execution traces. Starting with 

the execution trace output gathered through dynamic analysis of the PE file, we built our first dataset. 

The suggested solution is more than 98% accurate, according to extensive testing with a data set that 

includes both benign and malicious programmers. 
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1. INTRODUCTION 

Malware is software created to perform harmful actions, including stealing confidential information, 

gaining root access, and incapacitating the target computer. In the meantime, a wide range of 

malware has appeared as a result of the Internet's and the software industry's fast expansion. Over the 

last three quarters, there have been more than 774 million malware samples, an increase of almost 

34%. Malware (also known as malware) increases over time. Therefore, malware detection is an 

important and fascinating topic. How to recognize malware has been studied extensively. Because 

they have a limited ability to detect new threats, signature-based static anti-virus software is often 

used to identify malware. Many malware can easily avoid detection from signature-based security 

measures if it has been encrypted, obfuscated, or packaged to avoid detection. This detection method 

can be circumvented by zero-day malware. Real-time system scanning Unlike cloaking strategies, 

lurenjie17@mails.ucas.ac.c is a more effective malware detection tool. For dynamic behavior-based 

malware detection approaches, a protected and controlled environment, such as virtual machines, 

emulators, sandboxes, etc., is frequently needed [4] [5]. The following stage involves doing 

behavioural analysis utilising data acquired from interactions with the environment, like API calls 

and DLL calls. These techniques have been extensively studied, however they are ineffective when 

used to huge data sets [6]. To keep dynamic behavior-based malware detection systems from 

contaminating the operating environment, it requires a lot of time and work. Over the past few years, 

machine learning-based malware detection techniques have been developed. The first publication of 

the data mining-based malware detection technique was in ref [7]. It employs three different kinds of 

static features: 

A text string, a byte sequence, and a PE header are used to spot malware. Kolter and Maloof [8] 

evaluated the effectiveness of naive Bayes, decision trees, and support vector machines for virus 

identification using n-grams as opposed to byte sequences. In recent years [9,10], malware has also 

been detected using artificial neural networks [9]. There are also new methods for detecting malware. 
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Malware can be detected by image processing in [11] and [12]. However, the previous attempt was 

successful enough in terms of malware detection. The machine learning classifier is trained by 

manually analyzing malicious code and comparing it with features extracted from the code itself. An 

innovative and efficient approach to determine if a Windows executable is malware has been 

proposed in this study to reduce engineering costs for artificial features. The assembly format files of 

the executables need to be recovered by splitting them first with IDA Pro. We need a method to take 

the opcode string out of each file in assembly format. Then, word embedding techniques [13] and 

long-term memory (LSTM) [14] are used to comprehend the feature vector representation of the 

opcode and automatically learn the opcode sequence patterns of the malware. After the second 

LSTM layer, we add an average aggregation layer to improve the immutability of the local feature 

representation. We ran a series of tests on a dataset consisting of 969 malicious files and 123 benign 

files to see if our strategy worked. MalwareXiv: 

1906.04593v1 [cs.CR] 10 June 2019 Detection performance was evaluated during the experimental 

period and comprehensive performance comparison with other similar studies was conducted. The 

assessment results demonstrate that our suggested method can identify malware with an average 

AUC of 0.99 and classify malware with an average AUC of 0.987.   

 

2. LITERATURE SURVEY 

Unlike static analysis, dynamic analysis-based malware analysis techniques are more resistant to 

obfuscation. Dynamic analysis was used to classify API requests that took less than five minutes in 

[1]. The AUC, a measure of quality, was calculated using 170 samples and yielded a score of 0.96. 

Separately collected samples of benign and malicious software were used to build a response 

network using the API call feature set. It performs well compared to previous methods, but lacks 

research on execution speed, which is essential for real-time implementations. ESN and RNN tests 

were performed in [3] to learn the language of the malware. ESN performed better than RNN in the 

majority of studies. Tests were performed in [4] to determine when to stop running viruses on 

network traffic, as shown in [5]. Conventional procedures require 67% more time than this method. 

With long-chain API calls as a feature, the RNN and its long-term short-term memory (LSTM) and 

CNN versions were used for malware classification in [6]. The main problem with current methods is 

that they take a long time to test the behavior of the system during operation. It has been used in [7] 

to classify malware using a system call sequence in the form of a hybrid CNN and RNN. SVM and 

Hidden Markov Model were previously used to obtain these system calls, but dynamic analysis was 

used to obtain them and it was found to be more efficient (HMM). The biggest problem, however, is 

the lack of discussion about the relevance of runtime in real-time virus detection. Using RNN and 

two datasets, [13] proposes a technique. In addition, they tested the performance of several well-

known classical machine learning classifiers. With a run time of 5 seconds, they claimed an accuracy 

of 94%. Analysis-based static, dynamic, and mixed malware detection methods have been the subject 

of several investigations. HMM has been used for both static and dynamic feature set analysis and to 

compare detection rates for a large number of malware types in [8]. Overall, they found that dynamic 

analysis had the best detection rate WindowsDynamic-Brain-Droid (WDBD) was the model we 

developed to compare and contrast several traditional machine learning algorithms (MLA) and deep 

learning architecture to determine which technique is best for Windows Malware Classification. The 

number of malware and benign patterns in our dataset varies with runtime, which is why we used 

two separate datasets. 

 

3. PROPOSED WORK 

The main goal of Long-Term Memory (LSTM), a specialised RNN architecture, is to resolve the 

leak slope problem or at the very least lessen the impact of the gradability problem. performance of 

computers is a leak slope. Nodes in the LSTM neural network have concealed state from the 

preceding phase, similar to RNN. The node, a typical LSTM unit, has a better structure than an RNN, 
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which is crucial for supplying long-term memory by lessening the impact of the leak gradient.  

A standard LSTM unit generates an output value from an input value. The produced output value of 

the current cell and the prior cell's cell state value—which will be detailed in more detail in the 

coming paragraphs—are both used during this process. The following three functions can be carried 

out by an LSTM unit. 

Erasing undesired information from the tile's present state by using the Forgotten Gate 

Through the front door, add new details to the current state of the cell. 

Output the condition of the current cell through the output port.  

 
Fig-1:TheinteriordesignofacommonLSTMcell[24] 

An typical LSTM unit's interior is straightforward and practical, as seen in Figure 1. By disregarding 

the input of this current cell (Xt) and its output (ht1) of the preceding cell (ht1), the sigmoid function 

may be utilised to create an output between 0 and 1 on the left side of a cell. The current cell state is 

updated and created by multiplying this value, ft, by the cell state that was previously displayed, Ct1. 

A value that travels across cells to transfer information between them is essentially what a cell state 

is. The forgetting gate is a component of the unit that uses a multiplier operation to determine which 

information will be forgotten and how much will be remembered in succeeding cells [26]. 

 In the centre of the cell, there are two sigmoid functions, a tan h function, and their output is 

multiplied together. The output of the previous cell, ht1, as well as the input from the current cell, Xt, 

are both used as inputs for the sigmoid function in this. The output value of this sigmoid, in contrast 

to the sigmoid function used in the monitoring process, will be used to signify what new value 

should be added to the existing state of the cell.  

An array of possible values is created by the tan h function, which may or may not be added to the 

cell's present state in the future. By dividing the output of the cell's sigmoid by the output of tan h C 

t, one may determine the values that should be added to the cell's present state. The output of the 

sigmoid it is multiplied by the output of the tan h C t to achieve this. The final current cell state is 

produced by updating the prior cell state Ct1, which was altered by the forget gate, with fresh data 

from the input via an add operation. The front gate is the name given to this portion of the LSTM 

unit as a result [26].  

 
 

An array of possible values is created by the tan h function, which may or may not be added to the 

cell's present state in the future. By dividing the output of the cell's sigmoid by the output of tan h C 

t, one may determine the values that should be added to the cell's present state. The output of the 
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sigmoid it is multiplied by the output of the tan h C t to achieve this. The final current cell state is 

produced by updating the prior cell state Ct1, which was altered by the forget gate, with fresh data 

from the input via an add operation. The front gate is the name given to this portion of the LSTM 

unit as a result [26].   

In general, the current LSTM cell creates the output by updating the cell state of the previous cell 

while also receiving the output and cell state of the previous cell in addition to the current cell's 

input. The sequential internal nature of the LSTM architecture gives higher efficiency when handling 

data that comprises prolonged sequences of events than the basic RNN architecture.   

 

4. RESULTS & DISCUSSION 

The dataset (Drebin-215) also contains 215 functionalities from 15,036 app samples, of which 9476 

were malware samples from the Drebin project and the remaining 5560 were safe samples [4]. The 

dataset (Drebin-215) also contains 215 data points from 15,036 app specimens, of which 9476 were 

deemed benign and the remaining 5560 were deemed malicious. The public can access the Drebin 

samples for free and they are frequently used by scientists. Two datasets, Drebin-215 and 

Malgenome-215, are available for download in the supplementary information. 

 

 
Fig-2:Accuracy 

Classification Whenever we say "accuracy," we typically refer to the degree to which something 

isaccurate. The ratio of correct predictions to the total number of input samples is avaluable 

indicatorofaccuracyin aforecastingmodel. 

 

Herefig-2representsthe precision of the distinction between benign and malicious samples. 

Additionally, the graph contrasts the proposed LSTM model with the existing ANN model. The 

ANN model is unable to accurately differentiate between dangerous and benign components. 

Because malicious code consists of a series of operations, ANN is unable to remember code 

sequences. However, because the LSTM model has a memory unit, it can provide improved accuracy 

as the number of epochs increases. While the number of ages is increased, ANN fails to offer 

improved accuracy at the same time. 

 
Fig-3:Precession 

The ratio of true positives to all other true positives and false positives can be used to determine 

precision. Precision looks analyses the information to see how many false positives were mixed in. 
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The model's accuracy is 100% if there are no false positives (FPs). The more FPs added to the mix, 

the more unsightly that precision will appear. 

Precision is defined as TP/(TP+FP). Figure 3 depicts the classification of harmful samples and good 

samples. The graph also compares the proposed LSTM model to the current ANN model. The ANN 

method falls short of offering a more precise classification of damaging and beneficial cases. ANN is 

unable to recall harmful code sequences since it comprises of a number of operations. However, 

because the LSTM model has a memory component, it can provide better precession as the number 

of epochs rises. At the same time, as the number of epochs rises, ANN fails to provide. 

 
 

Fig-4:Recall 

Itiscalculatedas the quantity of accurate optimistic findingsseparated by the total 

amountofappropriatesamples. 

Precision=TP/(TP+ FN)  

Figure 4 shows recall for the distinction between harmful and benign samples. Additionally, the 

graph contrasts the proposed LSTM model with the existing ANN model. The ANN model does not 

provide superior 

 
Fig-5: RMSE 

 

Keeping in mind both bad and good instances. ANN is unable to recall malicious code sequences 

since it comprises of a number of operations. The LSTM model, however, incorporates a memory 

element that enhances recall as the number of epochs increases. ANN also fails to provide as the 

number of epochs increases. 

The RMSE is the statistical term for the standard deviation of errors that occur when a forecast is 

made based on a dataset. The only difference between this and MSE is that when assessing the 

model's correctness, the foundation of the number is taken into account. 

Here fig-5 represents the precession of harmful samples and benign samples according to the RMSE 

categorization. The suggested LSTM model and the current ANN model are contrasted in the graph. 

While the LSTM generates a low RMSE value, the ANN model produces an error value that ranges 

from 0.4 to 0.6. Because malicious code consists of a series of operations, ANN is unable to 

remember code sequences. However, the LSTM model has a memory unit that can perform better as 

the number of epochs rises. At the same time, as the number of epochs rises, ANN fails to provide. 
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Fig-6:AUC 

The Receiver Operating Characteristics (ROC) curve is summarised using the Area Under the 

Curve (AUC), which evaluates a classifier's aptitude for differentiating across classes. The better 

the user perceives the model's capacity to distinguish between positive and negative categories, the 

higher the AUC. 

FIGURE 6: AUC for identifying malicious and benign samples is shown here. Furthermore, the 

proposed LSTM model and the current ANN model are contrasted in the graph. The ANN model 

falls short in providing improved AUC for malicious and benign cases. ANN is unable to remember 

code sequences because harmful code consists of a succession of activities. AUC can improve as the 

number of epochs rises. 

 

 
Fig-7:ROC 

More items are categorised as positive when the classification threshold is lowered, which raises the 

proportion of True Positives and False Positives in the database. 

Fig. 7 depicts the classification of dangerous and benign samples. The graph also compares the 

proposed LSTM model to the current ANN model. The ANN model is unable to offer a superior 

ROC of dangerous and benign situations. ANN is unable to recall harmful code sequences since it 

comprises of a number of operations. The memory component of the LSTM model, however, 

enhances ROC as the number of epochs increases. As the number of epochs rises, ANN also 

becomes ineffective at providing. 

 

CONCLUSION 

Since the introduction of information systems that had a significant impact on people's lives, 

malware detection techniques have been developing. The exponential growth of the information 

technology sector necessitates the development of malware detection techniques that are speedier 

and more precise. Additionally, sophisticated and fully automated malware detection systems are 

required due to malware writers' anti-detection strategies like obfuscation techniques. Given these 

specifications, artificial intelligence (AI)-based technologies make the best candidates for creating 

more dependable malware detection techniques. Machine learning (ML) classification techniques 

were frequently utilised in early AI-based research to distinguish between data produced by harmful 

and helpful software. But because feature extraction and selection require time and effort, ML 

classification algorithms do not offer fully automated methods. 
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